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Abstract: Embedded systems with hard real-time
constraints need sound timing-analysis methods for
proving that these constraints are satisfied. Com-
puter architects have made this task harder by im-
proving average-case performance through the in-
troduction of components such as caches, pipelines,
out-of-order execution, and different kinds of spec-
ulation. This article argues that some architectural
features make timing analysis very hard, if not infea-
sible, but also shows how smart configuration of ex-
isting complex architectures can alleviate this prob-
lem.
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1. Introduction

This paper is concerned with multi-core architec-
tures for embedded control systems with high pre-
dictability requirements that are to be used in the
automotive and aeronautics industries. Embedded
hard real-time systems need reliable guarantees for
the satisfaction of their timing constraints. Expe-
rience with the use of static timing analysis meth-
ods and the tools based on them in the automotive
and the aeronautics industries is positive. How-
ever, both, the precision of the results and the ef-
ficiency of the analysis methods are highly depen-
dent on the predictability of the execution plat-
form. In fact, the architecture determines whether a
static timing analysis is practically feasible at all and
whether the most precise obtainable results are pre-
cise enough. The architecture is usually designed to
improve average-case performance. The predictabil-
ity of the performance-enhancing features is not a
criterion for such average-case designs. Yet, the
dependence on the architectural development is of
growing concern to the developers of timing analy-
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sis tools and their customers, the developers in in-
dustry. The problem reaches a new level of sever-
ity with the advent of multi-core architectures in
the embedded domain. Based on experience with
static timing-analysis of single core architectures in
the embedded-systems industry [30, 32], theoretical
insights [21, 19, 10], and characteristics of avion-
ics and automotive applications, we give advice con-
cerning future multi-core computer architectures for
time-critical systems. Furthermore, as such a pre-
dictable multi-core architecture has not yet been
implemented, we show how to configure available
multi-cores in a way suitable for static timing analy-
sis.

2. Foundations and Context

2.1 AUTOSAR and IMA

Growing software complexity in the embedded do-
main has led to the development of standardized
frameworks which focus on integrating components,
possibly developed by different suppliers, on Elec-
tronic Control Units (ECUs). Examples are AU-
TOSAR in the automotive domain and the IMA ar-
chitecture in the aeronautics industry. Both IMA
and AUTOSAR are claimed to support composition-
ality and composability; the behavior of a system
is determined by the behavior of the system’s com-
ponents and the type of composition (composition-
ality), and the behavior of individual components
should not change by the composition (composabil-
ity). For time-critical systems, composability of the
timing behavior means that the modification of one
component only influences its own timing behavior
and not that of other components. This depends on
the availability of architectures on which software
composition does not lead to unpredictable timing
behavior.

Applications in our context are vehicle functions that
are mapped to computational units. An application
may consist of several tasks. Engine control, elec-
tronic stability program, flight control and guidance



would all be considered applications in this sense.

2.2 Static Timing Analysis

Exact worst-case execution times are impossible
or very hard to determine, even for the restricted
class of real-time programs with their usual coding
rules. Therefore, these guarantees consist of safe
and precise upper bounds on the execution times of
tasks. The combined requirements for timing analy-
sis methods are:

• soundness, to ensure the reliability of the guaran-
tees,

• efficiency, to make them useful in industrial prac-
tice, and

• precision of the results, to increase the chance to
prove the satisfaction of the timing requirements.

Any software system when executed on a modern
high-performance processor shows a certain varia-
tion in execution time depending on the input data,
the initial hardware state, and the interference with
the environment. In general, the state space of in-
put data and initial states is too large to exhaus-
tively explore all possible executions in order to de-
termine the exact worst-case and best-case execu-
tion times. Instead, bounds for the execution times
of basic blocks are determined, from which bounds
for the whole system’s execution time are derived.
Some abstraction of the execution platform is neces-
sary to make a timing analysis of the system feasible.
These abstractions lose information, and thus are in
part responsible for the gap between WCETs and up-
per bounds and between BCETs and lower bounds.
How much is lost depends on the methods used for
timing analysis and on system properties, such as
the hardware architecture and the analyzability of
the software. The methods used to determine upper
bounds and lower bounds are very similar.

In modern microprocessor architectures, caches,
pipelines, and all kinds of speculation are key fea-
tures for improving (average-case) performance.
Caches are used to bridge the gap between pro-
cessor speed and the access time of main memory.
Pipelines enable acceleration by overlapping the ex-
ecutions of different instructions. The consequence
is that the execution time of individual instructions,
and thus the contribution to the program’s execu-
tion time, can vary widely. The interval of execution
times for one instruction is bounded by the execution
times of the following two cases:

• The instruction goes “smoothly” through the
pipeline; all loads hit the cache, no pipeline hazard
happens, i.e., all operands are ready, no resource
conflicts with other currently executing instructions
exist.
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Figure 1: Components of a timing-analysis frame-
work and their interaction.

• “Everything goes wrong”, i.e., instruction and/or
operand fetches miss the cache, resources needed
by the instruction are occupied, etc.

We will call any increase in execution time during
an instruction’s execution a timing accident and the
number of cycles by which it increases the timing
penalty of this accident. Timing penalties for an in-
struction can add up to several hundred processor
cycles. Whether the execution of an instruction en-
counters a timing accident depends on the execution
state, e.g., the contents of the cache(s), the occu-
pancy of other resources, and thus on the execution
history. It is therefore obvious that the attempt to
predict or exclude timing accidents needs informa-
tion about the execution history.

3. Single-Core Timing Analysis

3.1 Timing Analysis Framework

Over the last several years, a more or less stan-
dard architecture for timing-analysis tools has
emerged [12, 28, 8]. Figure 1 gives a general view
on this architecture. One can distinguish three ma-
jor building blocks:

• Control-flow reconstruction and static analyses for
control and data flow [27, 25, 6, 11, 26].

• Micro-architectural analysis, which computes
lower and upper bounds on execution times of ba-
sic blocks [7, 29, 10].

• Path analysis, which computes the shortest and
longest execution paths through the whole program.

The commercially available tool aiT by AbsInt
GmbH implements this architecture, cf. http://
www.absint.de/ait. The tool is employed in the
aeronautics and automotive industries. aiT has been



successfully used to determine precise bounds on ex-
ecution times of real-time software [10, 9, 30, 13].
As in this paper we only investigate the influence
of the architecture, the following will only be con-
cerned with the micro-architectural analysis phase:

Micro-architectural analysis [7, 29, 10] determines
lower and upper bounds of the execution times of
basic blocks performing an abstract interpretation
of the program execution on the particular archi-
tecture, taking into account its pipeline, caches,
memory buses, and attached peripheral devices. By
means of an abstract model of the hardware archi-
tecture, the pipeline analysis simulates the execu-
tion of each instruction. The cache analysis provides
safe approximations of the contents of the caches at
each program point. Complex architectural features
are the main challenges for this analysis phase.

3.2 Pipelines

For non-pipelined architectures one can simply add
up the execution times of individual instructions to
obtain a bound on the execution time of a basic
block. Pipelines increase performance by overlap-
ping the executions of different instructions. Hence,
a timing analysis cannot consider individual in-
structions in isolation. Instead, they have to be
considered collectively—together with their mutual
interactions—to obtain tight timing bounds.

The analysis of a given program for its pipeline be-
havior is based on an abstract model of the pipeline.
All components that contribute to the timing of in-
structions have to be modeled conservatively. De-
pending on the employed pipeline features, the num-
ber of states the analysis has to consider varies
greatly.

Since most parts of the pipeline state influence
timing, current abstract models closely resemble
the concrete hardware. The more performance-
enhancing features a pipeline has, the larger is the
search space. Superscalar- and out-of-order execu-
tion increase the number of possible interleavings.
The larger the buffers (e.g. fetch buffers, retirement
queues, etc.), the longer the influence of past events
lasts. Dynamic branch prediction, speculative exe-
cution, cache-like structures, and branch history ta-
bles increase history dependence even more.

All these features influence execution time. To com-
pute a precise bound on the execution time of a ba-
sic block, the analysis needs to exclude as many tim-
ing accidents as possible. Such accidents are data
hazards, branch mispredictions, occupied functional
units, full queues, etc.

Abstract states may lack information about the state
of some processor components, e.g. caches, queues,
or predictors. Transitions of the pipeline may de-
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pend on such missing information. This causes the
abstract pipeline model to become non-deterministic
although the concrete pipeline is deterministic.
When dealing with this non-determinism, one could
be tempted to design the WCET analysis such that
only the locally most expensive pipeline transition is
chosen. However, in the presence of timing anoma-
lies [14, 21] this approach is unsound. Thus, in gen-
eral, the analysis has to follow all possible successor
states.

3.3 Timing Anomalies and Domino Effects

The notion of timing anomalies was introduced by
Lundqvist and Stenström in [14]. In the context of
WCET analysis, [21] presents a formal definition. In-
tuitively, a timing anomaly is a situation where the
local worst-case does not contribute to the global
worst-case. For instance, a cache miss–the local
worst-case–may result in a globally shorter execu-
tion time than a cache hit because of scheduling ef-
fects. See Figure 2 for an example. Shortening in-
struction A leads to a longer overall schedule, be-
cause instruction B can now block the “more” im-
portant instruction C. Analogously, there are cases
where a shortening of an instruction leads to an even
greater decrease in the overall schedule.

Another example occurs with branch prediction, as
shown in Figure 3. A mispredicted branch results in
unnecessary instruction fetches, which might miss
the cache. In case of cache hits the processor may
fetch more instructions.

A system exhibits a domino effect [14] if there are
two hardware states s, t such that the difference in
execution time (of the same program starting in s, t



respectively) may be arbitrarily high, i.e. cannot be
bounded by a constant. E.g., given a program loop,
the executions never converge to the same hardware
state and the difference in execution time increases
in each iteration. The existence of domino effects
is undesirable for timing analysis. Otherwise, one
could safely discard states during the analysis and
make up for it by adding a predetermined constant.

Unfortunately, domino effects show up in real hard-
ware. In [24], Schneider describes a domino ef-
fect in the pipeline of the PowerPC 755. Berg [3]
provided another example considering the PLRU re-
placement policy of caches. Section 3.6 discusses a
cache domino effect in more detail.

3.4 Classification of Architectures

Architectures can be classified into three categories
depending on whether they exhibit timing anomalies
or domino effects.

• Fully timing compositional architectures: The (ab-
stract model of an) architecture does not exhibit tim-
ing anomalies. Hence, the analysis can safely follow
local worst-case paths only. One example for this
class is the ARM7. Actually, the ARM7 allows for
an even simpler timing analysis. On a timing acci-
dent all components of the pipeline are stalled until
the accident is resolved. Hence, one could perform
analyses for different aspects (e.g. cache, bus occu-
pancy) separately and simply add all timing penal-
ties to the best case execution time.

• Compositional architectures with constant-
bounded effects: These exhibit timing anomalies
but no domino effects. In general, an analysis
has to consider all paths. To trade precision with
efficiency, it would be possible to safely discard
local non-worst-case paths by adding a constant
number of cycles to the local worst-case path [20].
The Infineon TriCore is assumed, but not formally
proven, to belong to this class.

• Non-compositional architectures: These architec-
tures, e.g., the PowerPC 755 exhibit domino effects
and timing anomalies. For such architectures timing
analyses always have to follow all paths since a local
effect may influence the future execution arbitrarily.

3.5 Caches

Caches are employed to hide the latency gap be-
tween memory and CPU by exploiting locality in
memory accesses. To reduce traffic and manage-
ment overhead, main memory is logically partitioned
into a set of memory blocks. Memory blocks are
cached as a whole in cache lines of equal size. On
today’s architectures a cache miss may take several
hundred CPU cycles. Therefore, the cache perfor-

mance has a strong influence on a system’s overall
performance.

An important part of a static timing analysis is its
cache analysis, which tries to classify memory ac-
cesses as hits or misses. Memory accesses that can-
not be safely classified as a hit or a miss have to
be conservatively accounted for by considering both
possibilities, if the analyzed hardware architecture
is not fully timing compositional.

Both precision and efficiency of a cache analysis
strongly depend on the predictability of the em-
ployed replacement policy [19]. The Least-Recently-
Used (LRU) replacement policy has the best pre-
dictability properties. Employing other policies,
like Pseudo-LRU (PLRU) or First-In-First-Out (FIFO),
yield less precise WCET bounds, because fewer
memory accesses can be precisely classified. Fur-
thermore, the efficiency degrades, because the anal-
ysis has to explore more possibilities.

3.6 Cache Replacement Policies and Domino Effects

Pseudo-LRU replacement policy: PLRU is cheaper
to implement than true LRU in terms of storage
requirements and update logic. However, in some
cases, its replacement decisions differ substantially
from those of LRU, i.e. it does not replace the least-
recently-used element. In the following we demon-
strate this on a sequence of accesses and explain its
impact on the predictability.

Pseudo-LRU (PLRU) is a tree-based approximation
of the LRU policy. It arranges the cache lines at the
leaves of a tree with “tree bits” pointing to the line
to be replaced next; a 0 indicating the left subtree,
a 1 indicating the right. After every access, all tree
bits on the path from the accessed line to the root
are set to point away from the line. Other tree bits
are left untouched.

For instance, consider Figure 4. In the initial state,
the tree bits point to the line containing memory
block c. A miss to e evicts the memory block c which
was pointed to by the tree bits. To protect e from
eviction, all tree bits on the path to the root of the
tree are made to point away from it. Similarly, upon
the following hit to a, the bits on the path from a to
the root of the tree are made to point away from a.
Note that they are not necessarily flipped. Another
access to a would not change the tree bits at all as
they already point away from a. Finally, a miss to f
eliminates d from the cache set.

In the second state a miss would evict b. However,
accessing its neighbor a flips the tree bit at the root
of the tree. The access to a protects b as well. The
following miss evicts d instead of b. In this way, el-
ements may survive indefinitely without ever being
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accessed. This property is detrimental to the cache
analysis and thus the predictability of PLRU.

Figure 5 demonstrates the domino effect caused by
the PLRU replacement policy. Depending on the
initial cache state, repeating the access sequence
(c, d, f , c, d, h) n times either results in no misses at
all or leads to 2n misses.

FIFO replacement policy: Similarly to PLRU, caches
using the FIFO replacement policy are cheaply man-
ufactured, as they only require a single counter
pointing on the cache line to be evicted upon a miss.
In [3], Berg shows that FIFO caches feature domino
effects as well. In [18], the presence and extent of
domino effects in different policies, including PLRU
and FIFO is precisely quantified.

Round-Robin replacement policy: For caches, the
round-robin replacement algorithm is equivalent to
FIFO. Consequently, those caches feature the same
domino effects.

Random replacement policy: Using a random re-
placement policy could lead to domino effects too.
By chance, a cache using random replacement could
behave like any strategy featuring domino effects.

3.7 Cache Write Policies

The tightness of the computed WCET bounds is also
influenced by the employed cache write policy. In
case that write-through is employed, data is written
directly to main memory (and possibly to the cached
block). In case of write-back, data is written only to

the block in the cache. The modified cache block is
written to main memory only when it is replaced.

Whenever the cache analysis cannot exclude the re-
placement of a dirty cache line, a write-back event
might also happen. The less write-backs can be
excluded, the higher the overestimation and thus
the WCET bound. Furthermore, this increases the
number of states the analysis has to take into ac-
count, which consequently decreases the analysis ef-
ficiency. Current analyses do not try to exclude any
write-backs.

In case of write-through, the overestimation is lower
since there is only one case to consider (always write
to memory). However, this takes comparably longer
than writing to the cache only. Hence, the absolute
WCET bound must not necessarily be lower than for
write-back. Nevertheless, for real systems, write-
through seems to always result in lower worst-case
estimates.

3.8 Preemptive Systems

There are task sets that are only schedulable in a
preemptive scheduling regime. For instance, task
sets that include high priority tasks with short dead-
lines are often not schedulable in non-preemptive
regimes. Furthermore, each interrupt can be seen
as a preempting task. However, in modern hardware
architectures, preemption is not side-effect free. In
cached systems, the major part of the preemption
costs is caused by cache interferences. This part of
the preemption costs is commonly referred to as the



cache-related preemption delay (CRPD).

Memory accesses of the preempting task change the
cache contents. For instance, a memory access that
hits the cache during an uninterrupted execution of
the task, could then miss the cache, because the exe-
cution of the preempting task leads to the eviction of
the corresponding cache line. As a consequence, the
approximations of the cache contents are no longer
valid for a static WCET analysis of the preempted
task.

The problem caused by cache interferences within a
preemptive system can be solved in different ways:

Avoid cache interferences by cache partitioning [15,
33]. Each task is assigned a part of the cache, which
essentially fixes the CRPD to be zero by design. The
timing analysis techniques for non-preemptive exe-
cution can be applied accounting for the reduced
cache size of each task.

Incorporate cache interferences during WCET anal-
ysis. Schneider’s approach [23] assumes preemp-
tion at each program point to compute a safe upper
bound on the execution time under preemption. If
the amount of code or data is larger than the cache
sizes and there is some reuse of data or instructions
in the cache, this analysis largely overestimates a
task’s worst-case execution time.

Analyze cache interference costs separately. A
bound on the CRPD is derived by means of a static
analysis using data-flow analysis [2]. It computes an
upper bound of preemption-induced misses assum-
ing a constant penalty for each such miss. Being lim-
ited to timing compositional architectures, the anal-
ysis is not directly applicable to architectures featur-
ing caches suffering from domino effects [5], as e.g.
the PLRU replacement policy. During execution, a
preempting task could modify the cache state such
that a domino effect occurs, as Figure 5 shows.

4. Design of Predictable Multi-Cores

4.1 Interferences on Shared Resources

Most of the challenges of static timing analysis for
multi-core architectures are caused by the interfer-
ence on shared resources. Resources are shared for
cost, energy, and communication reasons. Even if
the sharing of a resource only slightly increases the
concrete execution times of a task, it might be diffi-
cult for a static analysis to prove this: If a resource
is shared among several (resource-)users, their ac-
cesses to this resource may be interleaved in a huge
amount of ways, in particular if the users are not
tightly synchronized. Different access sequences
may result in different states of the shared resource.
While the different interleaved access sequences
may already exhibit different execution times, the

resulting resource states may cause even more dif-
ferences in the future timing behavior.

We observe two kinds of interferences: Inherent in-
terferences and virtual interferences.

Inherent interferences on a shared resource is be-
havior that can actually be observed in a run of the
system. Such interferences might increase the ac-
tual execution times of tasks and therefore, inher-
ently, the WCET bounds of those tasks, too.

Virtual interferences are introduced by abstraction
of the system, i.e. loss of information about the sys-
tem. Although an interference might never happen
in a concrete run of the system, the analysis can-
not prove this, as it can only rely on its incomplete,
static information. For instance, if the timing analy-
sis for task T completely abstracts from concurrently
running tasks, it has to assume an interference by
another task T′ every time T makes an access to a
shared resource. This information loss is caused by
a (total) abstraction from the set of tasks and the sys-
tems task scheduling policies, which restrict what
can actually happen concurrently.

It is an open problem how to limit the information
loss about concurrently running tasks by suitable ab-
stractions. Hence, limiting inherent interferences
must be a high-priority design goal: If there can be
no interferences at all in the concrete system, it is
easy for an analysis to exclude interferences even
when abstracting completely from other tasks. One
first principle for predictable architecture design is
to strive for a good compromise between cost, per-
formance, and predictability, concerning the sharing
or duplication of resources.

4.2 Design Principles

The PROMPT (PRedictability Of Multi-Processor
Timing) architecture design principles, see [31], aim
at embedded hard real-time systems in the auto-
motive and the aeronautics industry requiring effi-
ciently predictable good worst-case performance.

The small amount of sharing existing in the set of ap-
plications allows to design a target architecture with
little interference on shared resources and thus lit-
tle variance of execution times and high predictabil-
ity. Our principle is Architecture follows Application.
The goals of this design discipline is to improve the
worst-case performance and to make the derivation
of reliable and precise timing guarantees efficiently
feasible. This design discipline will support the IMA
and AUTOSAR movements in the aeronautics and
the automotive industries. We conjecture that with-
out this or a similar design discipline the required
modular development process will not be realizable
without an unacceptable loss of guaranteed perfor-
mance.



We expect that the improved precision of the
execution-time bounds will

• increase the chance to show the satisfaction of
timing requirements, and thereby

• avoid the need of over-commissioning and save re-
sources.

The architecture is designed in a multi-phase pro-
cess. It starts with the design or the selection of the
cores that exhibit good predictability as discussed in
Section 3. Then the set of applications is considered:

• Hierarchical privatization will decompose the set
of applications according to their sharing character-
istics on the shared global state. The resulting par-
titioning of the set of applications could be used to
define an isomorphically structured target architec-
ture with no more shared resources than required
by the set of applications.

• Sharing of lonely resources would introduce shar-
ing of costly and infrequently accessed resources.
Input/output devices will most likely have to be
shared, for cost and space reasons.

• Controlled socialization would try to satisfy cost
constraints with an acceptable loss of predictability.
It would introduce sharing while controlling the loss
in predictability.

The main problem is to determine safe and suffi-
ciently small delays for the access to shared re-
sources. There seem to exist three alternatives:

Deterministic access protocols [22], “cumulative”
analyses using bound functions [17] and resource
access arbitration with bounded delays [1, 16]. A
deterministic protocol can be computed for the ac-
cesses to shared resources from the access patterns
to these shared resources. This deterministic proto-
col will allow to control the worst-case length of an
access delay and to derive safe and precise bounds
on the overall execution times.

Cumulative approaches use upper bounds on the re-
source consumption by interfering tasks to deter-
mine safe bounds on the access delays. Instances
of the third approach use arbitration schemes that
guarantee bounds on the delays for the accesses to
shared resources. The derivation of such bounds de-
pends on the arbitration protocol of the bus used to
access shared resources. In [1] such an arbitration
scheme is complemented with a resource front-end
to completely isolate the temporal behavior of tasks
accessing a predictable shared resource. As shown
in [4], a hybrid arbitration scheme featuring prop-
erties of round robin and TDMA exhibits both pre-
dictability and performance.

4.3 Design Guidelines

The recommendations made in the previous sec-

tions lead to the following design guidelines for pre-
dictable multi-core architectures for hard real-time
systems. The first three guidelines aim at the pre-
dictability of a single core, whereas the remaining
guidelines discuss the predictability of the overall
system.

1. A fully timing compositional architecture: Ex-
haustive enumeration of architectural states is prac-
tically infeasible. Therefore, an abstract hardware
model of the analyzed architecture is used. Tim-
ing anomalies in combination with interferences on
shared resources both introduce a high computa-
tional complexity of a static timing analysis and
lead to imprecise WCET bounds. Furthermore, only
within timing compositional architectures additional
delays can be bounded by a constant (e.g. due to an
access to a shared resource or due to a preemption
or interrupt).

2. Disjoint instruction and data caches: In case of
uncertainty about data access or if the order be-
tween a data and an instruction cache access can not
be precisely determined, the interferences between
data and instructions accesses impairs the precision
and additionally leads to an inefficient analysis.

3. Caches with LRU replacement policy: Employ-
ing replacement strategies like FIFO or PLRU yields
less precise WCET bounds and less efficient timing
analysis. Employing such strategies even introduces
domino effects.

4. A shared bus protocol with bounded access delay:
An unbounded access delay leads to an unbounded
execution time of tasks that access the shared re-
source. Guarantee of the timing constraints can be
given only in case of a bounded access delay.

5. Private caches: The uncertainty about cache con-
tents of shared caches impairs the precision and
leads to a more complex analysis.

6. Private memories, or, only share lonely re-
sources: The delay to access a shared resources de-
pends on the utilization of the resource. Hence, in-
troducing additional sharing may lead to a system
that is not schedulable.

5. Smart Configuration of Existing Multi-Cores

Section 4 discussed how one could design pre-
dictable multi-core architectures from scratch. How-
ever, currently available multi-cores were not devel-
oped with WCET analysis in mind. Consequently,
they exhibit timing anomalies, poorly analyzable
cache replacement policies, or fully shared mem-
ory. Leaving all those average-case performance-
enhancing features enabled renders static timing
analysis almost inapplicable.
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This section complements the former one by show-
ing how to configure multi-core processors in a way
such that static timing analysis becomes easier. In
the following, we make a configuration proposal for
two recent multi-core architectures—one from the
automotive domain, the other one from the avionics
domain.

5.1 MPC5668G – An Automotive Processor

Performance requirements of embedded automotive
processors are constantly growing as more complex
features are integrated in the overall system. Of-
ten a new application is implemented on a separate
device. Adding more and more features to an auto-
motive system is thus costly in terms of power con-
sumption, heat dissipation, and space (e.g. cabling).

Consequently, there is a need to reduce the num-
ber of ECUs inside a vehicle. To do so, one could
employ an embedded multi-core architectures that
provides enough computational power, interfaces to
peripheral devices (e.g. devices connected to CAN
buses, or FlexRay) and integrate several automotive
features on such single chip. This would lower the
power consumption, reduce the overall heat dissipa-
tion, and solve the space problem. A typical example
of such an architecture is the FreeScale MPC5668G
dual-core processor that supports several currently
available automotive communication protocols.

The MPC5668G processor comprises an e200z6
core—a rather complex processor—and an e200z0
core, which is a stripped-down version of the
e200z6. The e200z6 core utilizes a seven-stage
pipeline for single-issue in-order execution and re-
tirement of instructions. The z6 core uses an eight
entry branch target buffer (BTB) for branch predic-
tion. The BTB entries are updated using the FIFO
replacement algorithm. The cache is unified, 32KB
large, and 4-way (or 8-way, depending on the config-
uration) set-associative. Figure 6 depicts the block
diagram of the MPC5668.

To ease static timing analysis, we recommend the
following smart configuration:

1. Unified versus disjoint cache. Unified caches are
more challenging to analyze. The cache should be

configured such that disjoint ways are available for
code fetches and data accesses (i.e. disjoint cache).

2. Replacement policy. The cache uses a pseudo
round-robin replacement algorithm to determine
which cache line to evict upon a miss. There is a
single replacement counter for all cache sets. This
design is prone to high performance variations and
can have domino effects. To avoid this, we recom-
mend to lock the cache down to one way for code
and one way for data. The locked ways should be
filled with frequently accessed data or code. This
improves the analysis results.

3. Dynamic branch prediction. The e200z6 core
uses a BTB for dynamic branch prediction, which
is updated using the FIFO replacement policy. As
FIFO has domino effects, the branch target buffer
should be entirely disabled to make the core more
predictable.

4. Shared memories. In general the whole mem-
ory is shared among the two cores. However, the
hardware allows for some partitioning such that con-
flicts on the internal SRAM memory modules can
be avoided. The MPC5668G features two disjoint
SRAM memory modules: an 80KB module, and a
512KB module. To avoid any interferences on the
internal SRAM, the application software could be de-
signed such that one SRAM module only is used by
z0 core, whereas the z6 core solely uses the other
SRAM module.

5. Shared FLASH prefetch buffers. To reduce ac-
cess delays on the internal FLASH memory, the
MPC5668G core implements four prefetch buffers
that allow for zero-cycle access delays in case a
buffer already contains the requested data. The
prefetch buffers are shared between the two pro-
cessors, and are used for both instruction and data
accesses. For predictability reasons, the prefetch
buffers should only be enabled for one of the
cores, to avoid any interferences. Furthermore, the
prefetch buffers should be split up, such that dis-
joint buffers are used to satisfy instruction fetches
and data accesses (exactly for the same reason as
the cache should be split between code and data
accesses). This configuration does not redeem the
FLASH module of all interferences. An access of
any of the cores might still be delayed by an ac-
cess of the other one (address pipelining). To get
rid of those inferences as well, the code executed by
one core should be put into the privately used SRAM
module—where applicable.

The above configuration allows for an efficient static
WCET analysis that yields results that are quite pre-
cise.
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Figure 7: MPC8641D block diagram.

5.2 MPC8641D – An Avionics Processor

The MPC8641D is a dual-core derivate of the
MPC7448, which is a complex single-core architec-
ture employed in the avionics industry. A single-
core MPC7448 consists of a e600 core with a com-
plex, eight-level pipeline that allows out-of-order and
speculative execution and features first- and second-
level caches with PLRU and random replacement.
Already as a single-core, this architecture is non-
compositional, exhibiting both domino-effects in the
pipeline and the caches. The MPC8641D tightly cou-
ples two such cores with a single shared bus. Fig-
ure 7 shows the block diagram of the MPC8641D.
Each access, either for the instruction fetches or
any data access must pass this one shared resource.
Given the non-compositionality of the two cores, any
clash on the shared bus during execution could trig-
ger a domino effect. This makes the timing behavior
of the entire system very unpredictable, unless inter-
ference on the shared bus can somehow be avoided.

The individual cores can be made more predictable
by configuration: e.g. locking down the first level
caches to have a LRU replacement policy and us-
ing the write-through policy, completely locking the
random replacement second level cache for use as
scratchpad memory and using static branch predic-
tion in favour of the dynamic one. Still the domino-
effects which are possible in their complex pipelines
are not avoidable. Therefore, to get a predictable
multi-core system, clashes on the shared bus need
to be avoided.

For avoiding interferences upon bus accesses, two
features of the IMA architecture and the employed
cores are very helpful:

• The IMA architecture features time slices for the
individual tasks in the ten milliseconds range, which
is quite long compared to the one millisecond typ-
ically seen in the automotive domain. Inside each
of this time slices, the input/output activities, which
only make up a fraction of the slice, can be moved
to the beginning and the end of the individual time

slice to create local copies of the working set. Then
the largest remaining fraction of the time slice can
the be used for the lengthy computation on the local
copies of the data.

• The two e600 cores are supported by private 1MB
second level caches. One of the cores can use this
cache as local private memory for instructions and
data by locking it. This allows the avoidance of bus
accesses by one core during the long computation
phases of its tasks.

Given the above design of the system, in which one
core works on its private memory most of the time
and only short time slices are needed for bus ac-
cesses, a clever scheduling can completely avoid
clashes of accesses. Therefore, the normal static
timing analysis, which assumes continuous execu-
tion without interferences, can be used to deal with
each of the cores separately.

6. Summary

The article presents the timing-analysis problem,
its roots, and architecture-dependent complications.
It sketches the currently available timing-analysis
technology for single-core architectures. Extrapo-
lating from the practical experience and theoretical
insights in the single-core case shows that wrong
multi-processor designs will make timing analysis
infeasible. Design principles for predictable multi-
processor architectures are given and finally it is
shown how smart configuration of existing archi-
tectures, designed without predictability considera-
tions, can improve predictability considerably.
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